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Abstract

Electronic voting schemes that claim to satisfy the property of receipt-freeness usually need
strong physical assumptions which are not available in real life. In this paper we present a
protocol that achieves receipt-freeness in a threshold model without unrealistic assumptions.
It is designed for large scale votes. It uses an existing type of untappable channels for the
initialization of a vote but only usual internet connections for the voting phase. The untappable
channels are needed only in order to achieve receipt-freeness but are not mandatory for all other
properties.

The protocol achieves receipt-freeness by allowing each voter to convince a votebuyer who
is willing to pay for a certain vote even though the voter casted an arbitrary vote. Even if
the votebuyer is able to eavesdrop all channels between voters and authorities except for the
untappable ones, it is indistinguishable for him whether or not the voter is telling the truth.

In case of coercion, a voter who is forced to cast a certain vote is still able to make sure that
the vote will be considered invalid and therefore ignored by the authorities without giving the
coercer the opportunity to figure it out. All these properties hold under the assumption that
no authority cooperates with a votebuyer or blackmailer.

A dishonest authority is able to prevent a voter from casting a vote. This cannot be prevented
but at least it will be detected that some irregularity has occurred. It is possible that the
correctness of the result can be influenced by dishonest authorities, but in a context of a large
scale vote, the level of overall correctness can still be judged by detecting the number of such
irregularities and comparing it to the result.

Universal verifiability is not achieved with this protocol. The protocol is based on a threshold
on the number of honest authorities. This is no loss compared to the protocols that claim to
have the property of universal verifiability in theory as they need additional elements e.g. a kind
of bulletin board that do not exist in real life. To implement this bulletin board it has to be
simulated by the authorities and therefore depends on the honesty of those authorities too.
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1 Introduction

Any voting protocol — whether electronic or not — has to achieve at least privacy for the voter,
availability and a high level of correctness of the result.
A threat to be considered is votebuying and blackmailing. One of the differences between conven-
tional and electronic voting is that votebuying is possible in a conventional context only for a small
number of votes. There is no obvious and efficient way for a voter to prove that the vote he casted
is the one the votebuyer is willing to pay for. In contrast to this, in the electronic context the voter
is able to show all randomness he has used for the encryption and if needed any private information
such as secret keys to convince a votebuyer of the vote he casted. All private information that is
needed to convince a votebuyer will be called the receipt.
A votebuyer who has eavesdropped the vote which was sent to an authority can now simply com-
pare that vote with the one he generates using the voter’s randomness and his private information
to verify if this vote is worth the money he is willing to pay. This process could be completely
automated and the result of a vote could be strongly influenced by votebuying if not changed.
Therefore receipt-freeness in our opinion is a mandatory property of an electronic voting scheme.
The property of receipt-freeness was first introduced by Benaloh and Tuinstra [?].

To achieve receipt-freeness one has to make sure that no voter can construct a convincing receipt.
Another way of describing the same property is to make sure that such a convincing receipt can
always be obtained using some fake protocol, no matter whether or not the voter has casted the
desired vote. In this case the receipt loses all its evidence and votebuying is no longer attractive.
There are major differences how receipt-freeness is defined. Will a voter be completely honest and
always follow the protocol, especially if one tells him to erase the randomness to make sure he can-
not construct his receipt, or might he be completely dishonest and act in an arbitrary way at every
moment? In the second case this gives a much stronger definition of receipt-freeness. At what time
is a voter allowed to interact with a votebuyer? During the whole vote or only at a certain time e.g.
after having casted his vote? Is it enough to be able to construct a “receipt” using a fake algorithm
that will be accepted with a non-negligible probability or is it necessary that such a receipt will
always be accepted? And what are the assumptions concerning the cooperation of an authority
and a votebuyer? Can receipt-freeness still be guaranteed even if an authority cooperates with a
votebuyer, as long as the voter knows which one it is? All these questions have to be answered to
determine the exact definition of receipt-freeness.

Blackmailing is possible only in small scale. Nevertheless for a single voter it might be a strong
threat that should be prevented too by a protocol that claims to be receipt-free. A blackmailer can
force a voter to cast a certain vote or prevent him from voting. The best thing a voting protocol
could achieve is to recognize such a coerced vote and ignore it. If a blackmailer asks a votebuyer
to prove that he has casted a certain vote it is necessary that the voter is able to generate a fake
receipt that will always be considered correct by the coercer.

Since the introduction of receipt-freeness several protocols that claim to achieve receipt-freeness
have been published. All these protocols have in common that they do not work safely without
strong physical assumptions such as a voting booth or untappable channels.
The task of this semester project was to construct a protocol that works with realistic assumptions
and provides a high level of security including receipt-freeness.
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2 Approaches

In order to get an overview and a more precise view on receipt-freeness we started with the study of
some publications concerning voting protocols in general and receipt-free ones in particular. Some
of the ideas found during those studies are part of the proposed protocol.

2.1 Receipt-free Secret-Ballot Elections [?]

In this paper from Benaloh and Tuinstra the property of receipt-freeness was first introduced. They
present a protocol for a receipt-free yes/no voting protocol that needs a voting booth as physical
assumption. They define a voting booth as a place where one can read or record from any channel,
but not write to any channel. In that paper they explain that the difference between privacy and
receipt-freeness is in the point that the voting booth does not only allow to keep a vote secret but
it requires that a vote stays secret which is the crucial point in discussing receipt-freeness.

2.2 Receipt-free Electronic Voting Schemes for Large Scale Elections [?]

The protocol presented in [?] is a modification of [?] that fixed some problems. The author claims
that this protocol works in large scale, although strong physical assumptions are needed. He
redefined the property of receipt-freeness based on the framework used in his protocol. To achieve
receipt-freeness untappable channels in the first version and a voting booth in the second version
are assumed. His definitions are quite different from the ones in [?], as he defines a voting booth
as a physical apparatus in which a voter can interactively communicate with one party and the
communication is perfectly secret to all other parties, which seems to be similar to other definitions
of a bidirectional untappable channel.

2.3 Deniable Encryption [?]

The goal of the paper of Canetti, Dwork, Naor and Ostrovsky [?] is quite different from the other
papers’. They show how to encrypt a message and send it to a receiver in a way that a sender can
claim to have encrypted a different message and a third party is not able to decide whether this is
true with a high probability. They achieve this goal using a trapdoor permutation and a hard-core
predicate.

The property that a sender can claim to have sent something different than he did and it is detected
only with a small probability seems to be very close to the property of receipt-freeness. By taking
a closer look into the protocol in depth we discovered that the difference lies in the point that a
voter who wants to sell his vote to a votebuyer has the possibility to commit himself to a way how
to choose his randomness even before the vote takes place. By doing this he loses the possibility
of encrypting his vote in a deniable way and a votebuyer could just ask for such a commitment,
e.g. a seed for a pseudo-random generator, and therefore he can be sure that the voter did really
cast the vote he claims.
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It is a subtle difference that in the context of the deniable encryption a sender wants to get the
deniability but in the context of receipt-freeness a voter could want to lose the deniability. To get
deniability the voter must be able to keep his vote private, but to get receipt-freeness the voter
must not be able to lose this privacy. Receipt-freeness seems to be a much stronger property than
deniability. Therefore this protocol could not be transformed such that it could be useful for later
use in the context of a receipt-free protocol.

2.4 Multi-Party Computation: Efficient Protocols, General Adversaries, and
Voting [?]

In this thesis several different approaches to a receipt-free voting protocol are proposed, e.g a
protocol based on ballot shuffling or a protocol using a randomizer which re-encrypts the votes
and proves the correctness of this re-encryption in a designated-verifier zero-knowledge proof1.
The ballot-shuffling protocol achieves receipt-freeness in a threshold context, the protocol with the
randomizer achieves even universal verifiability and receipt-freeness. For this property physical
assumptions, i.e. untappable channels are assumed.

The thesis contains a framework with several protocols, concepts and “tools” we have used in some
way in our protocol.

2.5 Vote Flipping

The main advantage of this idea is that the physical assumptions, in this case untappable channels
are needed only in the set-up phase of a vote.

In the set-up phase the voter contacts the authority e.g. the local government. The authority
presents two encryptions and proves publicly that one of them is an encryption of “yes” and the
other an encryption of “no”. These two votes are in a random order. Furthermore the authority
has to prove to the voter which encryption contains which vote. This proof is done as a designated-
verifier zero-knowledge proof as proposed in [?]. The voter signs both votes.

At the beginning of the vote the authority publishes both signed and encrypted votes on the bulletin
board. Now the voter sends a “1” or a “2” in order to make the decision which of the two votes
he wants to choose. As these votes were encrypted by the authority, she knows the votes of all voters.

A similar, but more efficient way is to choose “yes” as a “1” and “no” as a “-1”. The authority
presents only an encryption of either “yes” or “no”. The voter signs this encrypted vote and the
authority publishes it on the bulletin board. The voter only has to specify if he wants to invert the
vote, which can be done with at least some homomorphic encryption functions such as ElGamal-like
([?], [?], [?]) or Pailler encryption ([?]). The attack that a coercer chooses randomly one of the two
votes cannot be prevented and this random vote will be tallied as all the others. Detection is not
possible.

Another open question is how to make the protocol more realistic in a way that the voter does not
have to have physical contact at the beginning of every vote and if so, such an agreement should
last for more than only a constant number of votes.

1The idea of a designated-verifier zero-knowledge proof is that a zero-knowledge proof is combined with a second

one. To convince a verifier the proofer must know at least one of the two secrets, as it is an OR-combination of the

two proofs. The second proof shows the knowledge of the verifier’s secret key which is assumed impossible for anyone

except for the verifier himself. If the combination of these two proofs is passed by the verifier to somebody else, it

loses all evidence about the first proof because the fact that the verifier knows his secret key is trivial.
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2.6 Permuting the Candidates

In order to blind an encrypted vote we have considered the possibility to permute the order of
candidates2 in a different way for every voter. The problems with this idea have been fixed and
the permutation is a part of the proposal for a concrete implementation of the protocol presented
in this paper.

One of these problems was that a randomization attack still had a linear probability to produce a
valid vote even if a vote was chosen as a vector of a length that includes components that represent
an invalid vote. This problem was fixed using the concept of authentication tags.

In order to convince a voter that his vote will be correctly tallied, the authorities would have to
prove that the re-permuting was done correctly. If such a proof, even a designated-verifier proof, is
sent over a tappable channel, the property of receipt-freeness is lost. To create a protocol without
any unrealistic physical assumptions the voter can therefore not be sure that the re-permutation is
done correctly and has to trust that a certain number of authorities act honestly.

3 Suggestion of a Practical Protocol

The protocol is based on a homomorphic voting protocol. In the first part we will introduce a
basic version of the protocol. At the end we will improve the protocol and present an incremental
version.

3.1 Overview

The most obvious way to construct an electronic voting protocol is as follows: A voter chooses
his vote and encrypts it, sends his ballot to an authority which decrypts the ballot and tallies the
vote if it is from an entitled voter. This setting is used by electronic voting protocols which use a
single central server. The whole protocol is based on trust. The authority knows the votes of every
single voter in plaintext. Security including the correctness of the result depends completely on
the honesty of that authority. Receipt-freeness is given as long as the authority does not cooperate
with a votebuyer.

In order to prevent the authority from knowing each voter’s vote in plaintext, a homomorphic vot-
ing protocol could be used. The voter encrypts his vote using a homomorphic encryption scheme as
it is presented in Section ?? and sends it to the authority. The authority does not need to decrypt
it to be able to tally. The votes can be added using homomorphic addition and only the result will
be decrypted. At no point in time a single vote is available in plaintext and therefore privacy is
guaranteed. If there are several authorities that have to cooperate in order to decrypt a vote it is
even impossible for a dishonest authority to attack a voter’s privacy. Our protocol is based on such
a homomorphic voting protocol with threshold security.

The property of universal verifiability can be achieved by using an additional device where every
entitled voter can publish his vote, but no voter nor an authority can erase. In a homomorphic
voting protocol each voter will publish his ballot with the encrypted vote on that device and is
able to check whether the sum of encrypted votes is equal to the encrypted tally. To prove the
correctness of the decryption a witness is published. The main problem about universal verifiability

2In order to keep the protocol as general as possible we assume a vote where a voter has the choice between several

candidates. In our model a vote is valid iff only one candidate is chosen, i.e. a 1-out-of-L vote. A vote in which the

only valid votes are “yes”, “no” and abstention can be mapped directly to the candidate model.
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is that it depends on the existence of a device where everybody can read and write on, but nobody
can delete anything. As such a thing, usually called a bulletin board, does not exist, it has to
be simulated by the authorities. Now the security depends on their honesty. Therefore no voting
protocol will be able to achieve universal verifiability in a real world scenario.
Our protocol is a threshold protocol and is secure only if a certain number of authorities acts
honestly. It does not provide universal verifiability as this would depend on the number of honest
authorities too to simulate the bulletin board.

Next, the problem of votebuying has to be considered. To sell his vote a voter has to convince the
votebuyer that the vote he casted is the one the votebuyer is willing to pay for. In order to do
so the voter will open all secret and random parameters in the encryption. If a votebuyer is able
to eavesdrop the channels between voters and authorities he can easily check whether this proof
holds. To achieve receipt-freeness, additional physical assumptions such as untappable channels or
a voting booth are needed which generally do not exist in real life.

We have chosen to guarantee receipt-freeness, i.e. to prevent a voter from losing his secrecy even
if he wanted to, by blinding the encrypted vote in an information-theoretically secure way. The
voter blinds his encrypted vote using a key he has received from the authorities. In order to make
sure that a votebuyer does not know this key, it is sent over an unidirectional untappable channel
which exists in real life — in an envelope by mail.
This untappable channel is used only at the beginning of each vote. The voter has to be sure that
the key comes from the authorities, therefore the envelope is signed. The key itself is not signed in
order to make it deniable. The voter sends his encrypted and blinded vote to the authorities which
have to recover the vote by undoing the blinding and tally it as usual in a homomorphic voting
protocol. There is no way for the authority to prove that the unblinding was done correctly and
the encrypted vote is the one the voter did cast, without losing receipt-freeness.

As the vote a votebuyer could eavesdrop is blinded information-theoretically, the voter is able to
claim for each vote he casted that he has voted for some other candidate. This is possible because
the encrypted vote and the encrypted and blinded vote are statistically independent of each other.
A vote can be claimed to contain any information by presenting a fake blinding key. This blinding
key is obtained using a fake algorithm which has to be known to every voter. As the original key
was sent in a deniable way, each voter may claim having received the fake key from the authorities
and may “prove” to the votebuyer that the vote he casted was the one the votebuyer is willing to
pay for. This blinding could be implemented using a one-time pad. In our protocol we have chosen
a more convenient way, namely a permutation.

Another attack that is still possible in this setting is to randomize votes. A coercer could force
a voter to cast a certain vote. Although the coercer is not able to discover who this vote will be
counted for, as he will not know whether or not a voter gives him the correct blinding key, this
attack could affect the correctness of the result. We prevent the randomization attack by adding
a tag to the ballot which depends on the encrypted and blinded vote and the blinding key. If this
tag is not valid the authorities will ignore the ballot.
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3.2 Model

Entities We consider a model with N authorities A1 . . . AN . This set of authorities is denoted by
A. One authority called A1 has a special role during the first part of the protocol, the initialization
phase. A1 is the initiator of the vote and wants to generate the votecall that will be accepted by
all other authorities.
There are no special assumption about A1 concerning honesty than about the other authorities. It
might be convenient to choose A1 as some representative of the government.
The set of entitled voters V1 . . . VM is denoted by V. The size of V is M .

Communication Between each voter and every authority there is a unidirectional reliable syn-
chronous channel. Between the authorities secure channels are assumed. Over these secure channels
messages can be broadcasted from one authority Ai to all other authorities using a broadcast pro-
tocol that ensures consensus as defined in [?].
For the set-up of the vote, unidirectional untappable channels from the authorities to the voters
are assumed.

Key Infrastructure For the voting protocol, a public key infrastructure is needed to guarantee
the authenticity of the ballots from the entitled voters. That means that to each voter and each
authority a secret key and the corresponding public key is associated. The public keys must be
published authentically. The secret keys can be used to decrypt or sign messages, the public keys
to encrypt messages and to verify signatures. Each entity must know his own secret key and the
public keys from all the others to be able to check the different messages for authenticity.

Adversaries There might be one or several votebuyers who are willing to pay a voter for casting
a certain vote. Another type of adversaries are one or several blackmailers that coerce voters to
act in a certain way e.g. to cast a certain vote or not to join the vote at all.
Among the set of authorities A there might be a number of dishonest ones. The set of dishonest
authorities is denoted by Abad. A threshold t is defined by the number of authorities that are
required to decrypt an encryption. The size of Abad is bound by

| Abad |< t.

The number of honest authorities is therefore always greater or equal to N − t. To make sure that
the honest authorities are always able to decrypt the tally together, we assume that

t < N
2 .

No authority may cooperate with a votebuyer or blackmailer by assumption.
Among the entitled voters V1 . . . VM ∈ V, an arbitrary number can be dishonest and deviate from
the protocol in any way. A dishonest voter can interact with a votebuyer at any point of the
protocol. These dishonest voters are members of the set Vbad.
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3.3 Building Blocks

In this section we present the definitions of the building blocks together with a concrete implemen-
tation which fulfills the demanded properties and are used as part of this protocol.

3.3.1 Encryption

In order to encrypt the votes we need an asymmetric homomorphic encryption scheme.

Specification We consider a probabilistic public-key encryption function:

EZ : V × R → E, (v, α) 7→ e.

Z denotes the public key corresponding to the secret key z that is shared among the authorities,
V, R and E are groups.

The decryption function is

DZ : E → V, e 7→ v.

An encryption function is semantically secure if for any given encryption e and any two candidates
v1 and v2, where one of them is the decryption of e, it is infeasible to determine which vote is
contained in e with probability significantly higher than 0.5, unless the secret key is known [?].

An encryption scheme is homomorphic if

EZ(v1)⊗ EZ(v2) = EZ(v1 ⊕ v2),

where ⊗ is the operation in the group E and ⊕ is the operation in the group V × R.

In order to generate the secret key z and the corresponding public key Z we need a setup-protocol
where the key pair (z, Z) is constructed in a way each authority obtains a share zi of z in a
(t,N) threshold secret-sharing scheme and is publicly committed to this share.
The encryption scheme must provide threshold security such that for any set of less than t author-
ities, it has to be infeasible to decrypt an encryption.
For the decryption of the tally we need a decryption protocol that works with a shared secret key
and that gives us a witness to verify that the result of the decryption is correct.

Implementation As encryption function the ElGamal-like encryption, as proposed by [?] and
modified by [?] and [?] could be used. It works in a group G, |G| is prime with two generators g
and γ such that 〈g〉 = 〈γ〉 = G. The encryption scheme is defined by.

EZ(vi, αi) = (g
αi , γviZαi)

where Z is the public key according to the secret key z that is shared among the authorities.
This pair (z, Z) is generated in a setup protocol using a Shamir secret-sharing scheme with threshold
t. After this protocol each authority Ai has a share zi and is commonly committed to zi by Zi = gzi .
This encryption function is homomorphic, that is

EZ(v1, α1)⊗ EZ(v2, α2) = EZ(v1 + v2, α1 ¢ α2).

The decryption can be processed without reconstructing the secret key. Details can be found in
[?]. To decrypt the tally needs time of O(

√
tally) using the Baby-Step Giant-Step algorithm. As

the tally is bound by the number of voters M , the decryption can be done efficiently.

Another possible implementation could be done using Paillier Encryption [?].

9



3.3.2 Deniable Blinding

In order to make receipt-freeness possible despite that only tappable channels are available at the
moment a voter is casting his vote, the message — even an encrypted one — does not have to be
sent as it is, but it needs to be blinded beforehand.

Specification A blinding function B takes a message m and a secret key b as input and maps m
to Bb(m). The knowledge of Bb(m) gives no information about m as it is information theoretically
independent of m. A deniable blinding function has the further property that for every message
m, a key b′ can be found efficiently such that Bb′

−1(Bb(m)) = m′ for an arbitrary m′.

Implementation One way to implement such a blinding function is to use a one-time pad as
blinding key b and the xor-function as blinding function B. A blinded message Bb(m) is information
theoretically independent of the message m. It is evident that this implementation is deniable. In
order to receive a key b′ for a blinded message Bb(m) and a different message m

′ we simply apply
the xor-function to Bb(m) and m′. A disadvantages of this implementation is the length of the
secret key b that needs to be as long as the message m.

Other ways of implementing such a deniable blinding function can be chosen depending on the
structure and the properties of the message. We will use a permutation function that permutes the
order of candidates in our protocol because this implementation is very convenient for the chosen
type of vote and gives a better performance.

3.3.3 Authentication Tag

The authentication tag T is used to express whether the voter wants a certain ballot to be counted
or if the ballot – for example in case of coercion – should be invalid and ignored by the authorities.
Together with the authentication tag T goes the symmetric authentication key KauthvoterID

which
is used to generate or verify an authentication tag T .

Specification In order to generate the authentication key KauthvoterID
a key generation protocol

is needed. This key generation is done by the initiator A1. A possible implementation of this key
generation protocol would be to choose randomly KauthvoterID

uniformly distributed from the set of
all possible authentication keys.
There are three protocols that are needed for this authentication tag:

• generation protocol, takes as input a message m and the authentication key KauthvoterID
and

generates the corresponding authentication tag T :
generateTag(KauthvoterID

,m) → T

• verification protocol:
verifyTag(KauthvoterID

,m, T ) → {true, false}

• fake protocol:
generateFakeKey(message m,KauthvoterID

,message m′)→ K ′

authvoterID

where message m′ is the message that the voter claims to cast according to the votebuyer’s
desired vote.

The probability distribution of KauthvoterID
, generated by the key generation protocol and of

K ′

authvoterID
produced by the fake protocol have to be indistinguishable.
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Implementation The following is one possible realization of the authentication tag T and the
authentication key KauthvoterID

using geometric constructs.
The authentication key KauthvoterID

= (a, b) is a line3, characterized by its equation

y = ax+ b.

• generation protocol:
To generate an authentication tag T , the generation protocol

generateTag(KauthvoterID
,message m) → T

is realized as follows: The message m is the x-component, the authentication tag T is the
y-component using the equation from the authentication key KauthvoterID

.

T = a(message m) + b.

authentication tag T

message m

authentication key K auth = ax+b

Figure 1: Geometric implementation of the authentication tag T

• verification protocol:
To verify an authentication tag T with the verification protocol given the authentication key
KauthvoterID

and the message m, one just has to verify whether

T = a(message m) + b

is true or not.

3The reason for choosing two parameters randomly instead of only one e.g. using the set of all lines that run

through the origin, is in a very special kind of attack. If a coercer knows a voter very well he could be able to guess

which candidate the voter will vote for. Together with the ballot the voter casts this would give him full information

about the authentication key KauthvoterID
. Therefore we have chosen the authentication key with two degrees of

freedom.
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• fake protocol:
The most interesting part is the fake protocol:

generateFakeKey(message m,KauthvoterID
,message m′) → K ′

authvoterID
.

Given a message m and an authentication key KauthvoterID
, we first have to calculate the corre-

sponding authentication tag T . Now we want to find another authentication key K ′

authvoterID

that fits together with this authentication tag T and the given message m′. In other words
we have to find a line that goes through the point P = (m′, T ). There are infinitely many so
we can choose one randomly.

The distribution of the fake authentication key K ′

authvoterID
is indistinguishable from the au-

thentication key KauthvoterID
which is produced by A1.

message m

authentication tag T

infinitly many
possibilities for 
K’auth

authentication key K auth = a*(message m) +b

message m’

Figure 2: K ′

authvoterID
generated by the fake protocol

3.3.4 Authentic Deniable Transmission

To initiate this voting protocol the voter needs to receive some credentials i.e. in our protocol
the secret key for the blinding function and the authentication key. The transmission of these
credentials from an authority to a voter has to fulfill certain properties.

Specification The sender transmits a message m to a receiver. The receiver receives the message
in an authentic way, such that he can be sure that the sender of this message is really the one who
claims it to be. Nevertheless the receiver must not be able to convince anybody else that the
message he presents is the one he has received from the sender. To an observer who is not able to
read the transmission it is undecidable whether the receiver has produced the message by himself
or whether he has received it from the sender.

Implementation There is no way to implement a transmission with the specified properties in
the digital world. As soon as a message is transmitted authentically e.g. using some kind of signa-
ture, the receiver is always able to hand over the message together with the proof of authenticity
to convince any third party that this message came from the sender.
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But in the real physical world there are ways to implement such a transmission. It can be realized
as a letter with the credentials on in an envelope which is sent by conventional mail. The envelope
is signed by a conventional signature4 from the sender. The receiver is able to check the correctness
of that signature, as it is usually done in the real world.

The letter that is sent in this closed envelope has no letter-head or signature on it. There are only
the credentials printed on this paper in such a way that anyone could produce a similar sheet of
paper by himself5.

The receiver who checks the signature, decides whether the signature is correct, opens the envelope
and can be sure that the credentials come from the sender and that nobody was able to read them
on their way from the sender to the receiver, as long as he trusts the mail company that this
letter was not opened and the content was not manipulated. These assumptions of trust make
sense in a large scale setting. The receiver is not able to convince anyone that he has received this
letter as there is no evidence that he did not produce it by himself. Even if he hands over the
envelope, nobody can be sure whether the envelope was opened before, the content exchanged and
the envelope closed again by the receiver.

3.4 Basic Version of the Protocol

In this first version the protocol is divided into eight sequential phases. They follow each other in
a synchronous way such that the next phase will not start before the previous phase is terminated.
This division is chosen for reasons of comprehensibility. In the incremental version, which follows
this basic version, some phases will be merged for reasons of performance.

1. The vote is initiated by A1, the initiator. She generates the votecall vc that contains all
information about the current vote. That means that she decides on the identifier for the
current vote voteID, the list and the order of candidates, the list of entitled voters including
their public keys, the list of authorities with their public keys and a random function rf seed.
This random function maps each voter to one authority. rf seed : V → A. A1 has to prove
that this function is chosen randomly. If all authorities are willing to participate in this vote
and accept the votecall, they generate jointly a (z, Z) pair as specified in Section ??. The
public key Z is included in the votecall which is now signed by all authorities. If an authority
does not sign A1 has to modify the votecall and start over again. This votecall is published
authentically.

A1 chooses randomly for every entitled voter an authentication key KauthvoterID
which will be

used by the voter to create the authentication tag with the properties described in Section ??
and a candidate permutation πvoterID, πvoterID : {1, 2, .., L} → {1, 2, .., L}. This permutation
is the secret key for the blinding function introduced in Section ?? which is implemented as a
permutation. A1 broadcasts to all authorities the list of tuples (voterID,KauthvoterID

, πvoterID)
for all voters. Each authority stores this list.

2. Each authority distributes KauthvoterID
and πvoterID to those voters she is assigned to by rf seed.

This is done using the authentic deniable transmission as described in Section ??. The voter
has to be sure that he receives this information authentically from his authority. But he
must not be able to convince anybody else that these are the KauthvoterID

and πvoterID he
has received from his corresponding authority. Therefore the authority signs the envelope

4An alternative way would be a digital signature of the receiver’s address which is printed on the envelope. The

receiver would have to type it in to check its correctness.
5In order to make sure that this is possible the government could even provide such a tool.
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in which she sends these informations but she does not sign KauthvoterID
and πvoterID itself in

order to make them deniable.

If a voter does not receive an envelope with these informations or something with the signature
or the content is not as it is supposed to be, he contacts the local government to get his
KauthvoterID

and πvoterID.

3. The voter chooses his vote v by generating the vector with a “1” at the position of his de-
sired candidate and a “0” everywhere else and encrypts it componentwise according to the
encryption scheme from Section ??. Then he applies the blinding function, i.e. his candidate
permutation πvoterID to his encrypted vote e. In order to prove that this is an encryption of a
valid vote he generates a validity proof that shows that all components are either “0” or “1”
and that all components sum up to 1.6

According to Section ?? the whole message should be blinded. That means that not only
the encrypted message is blinded, but also the validity proof. Otherwise the proof could give
information about the vote itself. We have decided to solve this problem by performing the
validity proof to the encrypted and blinded vote. As the voterID and the voteID do not
contain any information about the chosen vote, they remain unblinded. We will denote the
encrypted and blinded message by ẽ, the validity proof upon the encrypted and blinded vote
by P̃ .

In order to obtain a valid authentication tag T for his vote, he uses the generation protocol
generateTag(KauthvoterID

,m) → T from Section ??. As message he uses the concatenation
of the encrypted and permuted vote ẽ and his candidate permutation πvoterID. The ballot b
is now simply a concatenation of all these parts: The voter’s ID voterID, the current vote
ID voteID, the authentication tag T and the validity proof and the signature upon all these
components:

b = (voterID, voteID, ẽ, T, P̃ , signSKvoterID
(voterID, voteID, ẽ, T, P̃ )).

In order to make sure that the ballot will be counted the voter sends it to at least one honest
authority.

4. If the voter wants to sell his vote to one or several votebuyers he generates a ”fake” au-
thentication key K ′

authvoterID
for each vote he wants to claim having casted. These ”fake”

authentication keys are generated using the fake protocol from Section ??:
generateFakeKey((ẽ, πvoterID),KauthvoterID

, (ẽ, π′voterID))→ K ′

authvoterID
.

5. Each authority checks all received ballots whether the signature is correct and the ballot
therefore is authentic from the entitled voter who’s voterID is included in the ballot. If it is,
she stores it, otherwise she ignores it.

6. At the end of the vote each authority broadcasts the stored votes and stores all the incoming
ones from the other authorities. After this exchange all honest authorities will have exactly
the same ballots stored.

7. All ballots are now checked for correctness and validity.

A ballot is called correct, if the signature is correct corresponding to the voters public key,
the voteID is the one of the current vote and the validity proof is correct.

6The first part is an AND-combination of L OR-proofs, the second part is straight forward using homomorphic

addition.
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A ballot is called valid, if the authentication tag T is correct. This is the case, if the verifica-
tion algorithm verifyTag(KauthvoterID

, (ẽ, πvoterID), T ) returns true.

In order to count the votes each authority has to distinguish between these different cases for
all received ballots from one voter:

• If a ballot is incorrect either because of a wrong signature, an invalid proof or a wrong
voteID it is ignored.

• If there are ballots which are correct but only invalid ones, she increases the number of
accusations for the authority who has sent the envelope to that voter by one and ignores
the ballot.

• If there is exactly one correct and valid ballot from a voter, it is added to the interme-
diate result by homomorphic addition.

• If there are several different correct and valid ballots from the same voter they are
ignored.

The handling of the accusations is a political, not a technical concern. Possible treatments
will be discussed in the summary in Section ??.

8. The authorities decrypt the tally using the distributed decryption protocol from Section ??.
Each authority publishes the decrypted result together with the witness for the correctness
of the decryption.

3.4.1 Initialization Phase

In the initialization phase the set of participating authorities A1 . . . AN is determined and the
parameters for the current vote are chosen, such as the voteID or the random function rf seed to
map the voters to the authorities.
The initiator A1 also chooses the candidate permutation πvoterID and the authentication key
KauthvoterID

randomly for every entitled voter and broadcasts this information to all other authorities
over the secure channels.

1. A1 generates a votecall vc consisting of the following points:

• voteID, identifying the current vote
• list of candidates
• order of candidates
• list of participating authorities, each with her corresponding public key
• list of entitled voters, including their public keys
• random function rfseed to map each voter to a corresponding authority based on the
voters public key and a witness that rf seed is chosen randomly, e.g. a hash of the votecall
is used as seed.

2. A1 asks all authorities to participate in the set-up protocol to generate the secret key z, which
is shared among the authorities and the corresponding public keys as defined in Section ??.
The corresponding public key Z will be used to encrypt the votes by the voters.

3. A1 includes the common public key Z to the votecall.
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4. A1 asks all authorities to sign the new votecall.

5. If one of the authorities does not accept to sign the votecall, the whole votecall has to be
regenerated e.g. by correcting the complained points or by excluding this authority from the
list of authorities.

At this point the set of N authorities A1 . . . AN is defined.

6. A1 chooses an authentication key KauthvoterID
randomly for every entitled voter as described

in Section ?? and a candidate permutation πvoterID as secret key for the blinding function
according to Section ??.

7. A1 broadcasts the list of generated tuples (voterID, authentication key KauthvoterID
, candidate

permutation πvoterID), one for each entitled voter, to all authorities.

8. Each authority stores KauthvoterID
and πvoterID for every voter.

Initiator A1 Authorities A1 . . . AN

generates KauthvoterID

and πvoterID

for each voter.
tuplevoterID

= (voterID,KauthvoterID
,

πvoterID) -

list of tuples
store KauthvoterID

and
πvoterID for each voter

Analysis As the initiator is the one who sets the whole protocol in motion, it is his decision to
start a vote. If he does not act according to the protocol and for example generates an incomplete
votecall or does not choose the seed for the random function rf seed randomly in Step 1., the vote
will not take place as the authorities do not sign the votecall, and that is what the initiator could
decide by his own anyway. Any misbehavior of the initiator is no stronger than what he is able to
do anyway in his role as initiator.
If an authority does not behave correctly in Step 2., it will be excluded and will not take part in
the vote. As each authority can decide in Step 5. whether she wants to sign or not, that is exactly
what she could do anyway. If this authority misbehaves, she must be ∈ Abad and therefore the
invariant | Abad |< t still holds after excluding the authority.
If the initiator chooses KauthvoterID

or πvoterID in Step 7. in some deterministic way such that a
votebuyer could be able to guess one or both of them, this is considered as a kind of cooperation,
which is excluded by assumption. Due to the properties of the used broadcast protocol as they are
defined in the model, it is impossible that some authorities could receive different information than
others in Step 8.
If an authority does not store the received information in Step 8., she must be a member of Abad

as she does not follow the protocol. As a member of Abad she can misbehave in any way, which
means that she can for example invent a KauthvoterID

or πvoterID as she likes.
By assumption we know that threshold | Abad |< t and t < N

2 and therefore the majority of the
authorities will have stored the correct information which will be necessary to check the validity of
a ballot later in the protocol. Therefore this misbehavior does not influence the result of the vote.

3.4.2 Distribution Phase

In the distribution phase, the permutation πvoterID and the authentication key KauthvoterID
are

transmitted from the authorities to the assigned voters. This is done using the implementation of
an authentic deniable transmission with conventional letters as described in Section ??.
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1. Each authority sends to the assigned voters an envelope with the ID of the current vote
voteID, and the voters ID voterID, which are signed by the authority. This envelope contains
KauthvoterID

and πvoterID, which are unsigned.

2. The voter receives this envelope and has to do several checks:

He checks that:

• it is the right authority to send him this envelope according to the random function
rfseed published in the votecall.

• the signature on the envelope is correct.
• the voteID is the one for the current vote.
• the candidate permutation πvoterID and the authentication key KauthvoterID

are of a valid
size and type.

If one check fails, the envelope is ignored.

Authority Ai Voter Vj

envelope with
sign(voteID, voterID)
containing KauthvoterID

and πvoterID

which are unsigned -

envelope
perform checks

3. If a voter does not receive an envelope or one of the checks fails, he has to contact the local
government. There he receives the authentication key KauthvoterID

and πvoterID authentically.

Analysis In Step 1. an authority could misbehave in many different ways: she could send nothing
at all, or she could sign the envelope wrongly or use a wrong voterID or voteID, she could send
an empty envelope or the envelope could contain wrong information in such a way that the voter
can recognize that this cannot be the correct KauthvoterID

and πvoterID. The voter usually cannot
prove this, as in case that a voter complains, there are both cases possible: Either the voter or
the authority is dishonest. In both cases the voter can get his KauthvoterID

and πvoterID at the local
government. Of course he cannot be sure that these are the correct ones, as this authority could
be a member of Abad as well, but he can complain until he receives something that has at least the
correct format, such that the voter cannot decide whether these are the correct informations.

If the authority sends a KauthvoterID
and πvoterID which are of correct format but different from the

ones the initiator has broadcasted, the voter will not be able to cast a valid ballot. This cannot be
avoided but will at least be detected. If a voter casts correct but only invalid ballots, the number
of accusations for this authority will increase by one. This can be the case if either the voter
is dishonest or he is coerced or he has received wrong information. In the first two cases, these
accusation will be more or less distributed equally over all authorities and therefore only give infor-
mation about how smooth the vote was in general. In the third case, if an authority sends wrong
KauthvoterID

and πvoterID to many different voters there will be an accumulation of accusations for a
certain authority. This will give important information for further votes. The result of a vote can
be considered correct, if the total amount of accusations is negligible compared to the amounts of
votes for the different candidates.
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If anybody else, e.g. an authority the voter is not assigned to by the random function rf seed, or a
votebuyer or any third party sends an envelope with some wrong KauthvoterID

and πvoterID, the voter
will detect this by checking the signature and ignore this envelope.
If a voter is dishonest and claims not to have received the envelope or to have received it containing
wrong data, this will not harm anybody.
If a voter has not received the envelope or with wrong data and the voter does not contact the local
government, he will not be able to cast a valid ballot. That is what a voter can do anyway and
will not change the result in any way. As the dishonest voters will be equally distributed over all
authorities, the accusations for the authority that will be caused by such a ballot will be distributed
equally too and have no further effect.

3.4.3 Voting Phase

To achieve both purposes — privacy and receipt freeness — the voter uses now the homomorphic
encryption scheme and the received permutation as blinding function to encrypt and blind his vote.
A vote v is a vector of length L, v = (c1, .., cL). Each component stands for a candidate. A vote is
valid if it has a “1” at the position of the candidate the voter wants to vote for and a “0” everywhere
else. A “yes/no” voting is just a special case of this protocol where L = 2.
In Step 7. the voter casts his ballot that contains his permuted and encrypted vote and the
authentication tag to mark any ballot as invalid that does not express his free will. Furthermore
the voter has to prove that his vote is valid. This validity proof is performed upon the encrypted
and blinded vote to guarantee that it contains no information about the vote. In order to make sure
that the vote is authentic, the voter signs all information with the secret key SKvoterID belonging
to the PKvoterID that is known to all authorities.

1. The voter chooses his vote v as a vector of length L with a single “1” at the position of the
candidate he wants to vote for and a “0” everywhere else.

2. The voter encrypts each component of his vote using a homomorphic encryption function as
defined in Section ?? with the random parameter chosen randomly and the authorities’ public
key Z.

e = E(v) = (E(v1, α1), .., E(vL, αL)), αi chosen randomly.

3. As blinding function B the voter permutes his encrypted vote e using πvoterID he has received
from the corresponding authority during the distribution phase. The encrypted and permuted
vote is denoted by ẽ = (E(vπvoterID(1), απvoterID(1)), . . . , (E(vπvoterID(L), απvoterID(L))).

4. The voter generates the authentication tag T using the generation protocol. The first param-
eter is the symmetric authentication key KauthvoterID

. The second parameter is the encrypted
and permuted vote ẽ concatenated with his permutation πvoterID.

T = generateTag(KauthvoterID
, (ẽ, πvoterID))

5. The voter generates the validity proof P̃ based upon the encrypted and blinded vote. This
proof consists of two parts: The first part is a AND-combination of L proofs that the i-th
component is an encryption of either “0” or “1”. The second part is the proof that the sum of
all components is equal to 1. These AND- and OR-combinations of proofs can be generated
using [?].

proof P̃ = ((E(vπvoterID(i), απvoterID(i)) is encryption of 0 or 1 | i = 1 . . . L),
(
⊗L

i=1(E(vπvoterID(i), απvoterID(i)) is encryption of 1)))
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6. To create his ballot, the voter concatenates his voterID, the voteID, the encrypted and per-
muted vote ẽ, the authentication tag T and the validity proof P̃ . He signs the whole string
with his secret key SKvoterID. The ballot consists of the five concatenated parts and the signed
part.

ballot b = (voterID, voteID, ẽ, T, P̃ , signSKvoterID
(voterID, voteID, ẽ, T, P̃ ))

7. The voter sends the ballot to those authorities he wants to. To be sure that his ballot is
counted, he needs to send it to at least one honest authority.

Analysis A voter is allowed to cast several ballots, as long as there are not two or more which
are both correct and valid, but different from each other. In this case none of them will be counted.
If a voter is coerced to cast a certain ballot, he has the possibility to make sure that it will not be
counted by using wrong πvoterID and KauthvoterID

as described in the denying phase. Later the voter
can still cast another ballot that is correct and valid and will therefore be counted, as long as he
can be sure that the coercer will not be able to notice this second ballot.
If the voter misbehaves, this will result in an incorrect (e.g. in case of choosing an illegal vote and
therefore creating an incorrect validity proof) or an invalid ballot (e.g. in case of using a wrong
πvoterID or KauthvoterID

. This ballot will not be counted or in case of incorrectness simply be ignored.

3.4.4 Denying Phase

This phase is optional. If the voter wants to sell his vote to a votebuyer, he has to prove that the
vote he casted is the one the votebuyer is willing to pay for.
No matter whether the voter has casted this vote or any different one, he is always able to prove
that it was the one the votebuyer asks for by using the fake protocol. This will give him a different
authentication key K ′

authvoterID
that fits perfectly to the ballot he recently sent to the authorities

and to the candidate permutation π′voterID the user claims to have received.

As there is no possibility in deciding whether a pair πvoterID, KauthvoterID
comes from the authority

or from the fake protocol, the proof he gives to the votebuyer is worthless.

1. The voter uses the fake protocol to generate K ′

authvoterID
for each votebuyer he wants to,

according to the desired vote.

K ′

authvoterID
= generateFakeKey((ẽ, πvoterID),KauthvoterID

, (ẽ, π′voterID))

2. The voter sends the K ′

authvoterID
, the desired permutation π′voterID and the randomness he has

used for the encryption together with his ballot to any votebuyer he wants to convince.

Analysis The voter will be able to convince the votebuyer even if the votebuyer has a copy of
the casted ballot, as K ′

authvoterID
and π′voterID could have been used to generate the same ballot as

well.
Even in case that a coercer is able to interrupt the connection and stop a ballot on his way from
the voter to the authorities, he will not be able to force the voter to cast the vote he wants him
to. If he asks the voter about his KauthvoterID

and πvoterID, the voter will give him the ones from
the fake protocol. If the coercer now asks the voter to cast another ballot using the previously
stated K ′

authvoterID
and π′voterID, the ballot will be invalid, as the authorities will concatenate the

encrypted and permuted vote ẽ with the correct πvoterID and therefore the authentication tag T
will not match.
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3.4.5 Collection Phase

During this phase each authority stores all the ballots she receives and which have a correct signa-
ture.

1. For each received ballot, each authority checks whether the signature is correct according to
the PKvoterID from the voter who’s voterID is included in the ballot. If it is not, this ballot
is ignored. Otherwise the ballot is stored.

If he receives an identical ballot that he has already stored, the new one is ignored.

Analysis This could take a huge amount of storage if many voters would send many ballots with
correct signatures in a kind of denial-of-service attack. As this would take place either in case of
coercion of many voters, which is not very likely as coercion usually does not work at large scale,
or in case of a huge amount of dishonest voters, it is rather not to be expected.
If a signature is correct the ballot must have been created by the voter or by someone who knows
his secret key SKvoterID as a signature cannot be falsified by assumption.
At the end of this protocol we will present an extension with incremental tallying, where the
problem of a denial-of-service attack is weakened.

3.4.6 Agreement Phase

Up to now the authorities do not have a common view of the casted ballots. After this phase until
the end of protocol, there is a common view between all honest authorities upon the submitted
ballots.

1. At the end of the vote, each authority broadcasts the stored ballots to all other authorities
over the secure channels between the authorities.

2. All the received ballots are stored.

Analysis If an authority Ai either does not broadcast or does not store a ballot, then Ai ∈ Abad

and therefore acts in an arbitrary way and the result of such an authority could be arbitrary anyway.
As long as the voter has sent his ballot to at least one honest authority, he can be sure that his
vote will be broadcasted and therefore be counted by all honest authorities.

3.4.7 Tallying Phase

In this phase the encrypted result is calculated. The ballots from every voter have to be considered
and each authority has to decide which votes are correct and valid and should therefore be counted.
To be able to detect the number of irregularities during the vote a list of accusations l is used. l is
a vector of length N, one dimension for every authority A1 . . . AN . This vector is used for storing
the information how many voters, corresponding to the authority they are assigned to according
to the random function rfseed have casted correct ballots but only invalid ones.
Each authority processes the ballots from each voter in the following way:

ballot b = (voterID, voteID, ẽ, T, P̃ , signature)

1. All received ballots are checked for correctness. That means that the voterID must be the
one of an entitled voter, the signature must be correct corresponding to the voters public key,
the voteID has to be the one of the current vote and the validity proof is correct. If a ballot
is not correct, the authority will not consider it any further.
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verify((voterID, voteID, ẽ, T, P̃ ), signature,PKvoterID)→ {true, false}

2. All received correct ballots are checked for validity, that is whether

verifyTag(KauthvoterID
, (ẽ, πvoterID), T ), as defined in Section ??, returns true.

3. Now there are four possible cases for each voter:

• If the authority has no correct ballot from a voter, nothing is counted.
• If she has one or several correct, but invalid votes and no correct and valid ones, she
increases the number of accusation for the authority which is assigned to this voter
according to the random function rf seed by one in the list of accusations l.

• If he has exactly one correct and valid ballot, that ballot will be counted. If there are
invalid ones, they can be ignored. The encrypted and permuted vote is re-permuted
using πvoterID

−1 and added homomorphically to the intermediate result.

• If an authority has several different correct and valid ballots from one voter, nothing is
counted.

Analysis At the end of this phase the encrypted tally all honest authorities will calculate is an
encryption of the result of at least all those correct and valid votes casted by entitled voters, that
reached an honest authority.

3.4.8 Decryption Phase

1. All honest authorities will get the same result that will now be decrypted jointly as defined
in Section ??.

2. The decrypted result has to be published authentically together with the witness to prove
that this is the correct decryption.

Analysis An authority Ai, where Ai ∈ Abad will act in an arbitrary way and will get any result
she wants to. As long as the invariant | Abad |< N

2 holds it will be possible to figure out the correct
result among all the published results, as the majority of all honest authorities will get the same
one.
If an authority misbehaves in Step 1. during the decryption, there are still at least the (N − t)
honest ones that will be able to decrypt the result.

3.5 Security Analysis

3.5.1 Correctness

An honest voter will cast a correct ballot. If he has received the same KauthvoterID
and πvoterID as A1

has broadcasted in the initialization phase from his corresponding authority, the ballot will be valid
and therefore be counted. If he has wrong ones the ballot will be ignored and the corresponding
authority is accused. The misbehavior is detected but correctness is affected.

As it is impossible by assumption on the broadcast protocol that the honest authorities receive
different public keys for a certain voter or different KauthvoterID

and πvoterID from the initiator, they
will all consider the same ballots as correct and valid. Therefore they will all get the same encrypted
result.
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The number of honest authorities is greater or equal the threshold t by assumption. For this reason
the honest authorities will be able to decrypt the result even without any help from a dishonest
authority, as any number of authorities greater than t can decrypt the tally with their shares zi.
At the end of the decryption phase all the decrypted results are published authentically. At least
every honest authority will now publish her result. As all their results are equal and the number of
honest authorities is the majority, whoever knows all published results can figure out which must
be the correct result.
If the assumption of the majority of the authorities being honest is violated, the main problem
is that the honest authorities are not able anymore to decrypt the encrypted tally as for the
decryption protocol, as described in Section ??, at least t participating authorities are needed.
And even if some dishonest authorities joined in the decryption, the interpretation of the result
which is published at the very end would be arbitrary. If all dishonest authorities decide on the
same result that might have been specified even before the vote took place, an observer will not
be able to distinguish whether the majority consists of the honest ones and some of the dishonest
ones, or if the correct result is published only by a minority.

3.5.2 Privacy

The secrecy of an encrypted vote is guaranteed as long as the assumption holds that | Abad |< t.
Any set of less than t authorities will not be able to decrypt a vote.
The only information that everybody can get who is able to eavesdrop all the channels between
voters and authorities is a kind of traffic analysis to see which voter casted which number of ballots
and whether they were correctly signed.

The number of ballots the voter sends and—for the dishonest authorities who know KauthvoterID
and

πvoterID —the fact whether a ballot is valid or not could be analyzed. As this could have different
reasons, from a simple mistake from a voter while generating his ballot to a voter being coerced,
the gain of information is limited.
If the assumption that the number of dishonest authorities is bound by the threshold t is violated,
privacy can no longer be guaranteed. The dishonest authorities are now able to decrypt every vote
and as the candidate permutation πvoterID is known to all authorities to determine the candidate
the voter casted his vote for.

3.5.3 Receipt-freeness

A voter is able to “prove” to a votebuyer, that he casted exactly that vote the votebuyer asks
for, even if a votebuyer is able to eavesdrop all casted ballots on all channels between voters and
authorities and the voter has casted a different vote. Using the fake algorithm as described in
Section ?? he can create a string that fits with the vote he claims to have casted perfectly.

If a voter is forced to use a certain KauthvoterID
and πvoterID to create his ballot or even to cast a

ballot a coercer already created, he is able to make the ballot invalid or in the second case he is
already invalid with overwhelming probability. His ballot is ignored as if he would not have voted
at all, except for the accusation that is a kind of indicator that there could have been something
going wrong. It is impossible for a coercer to force a voter to cast a ballot that will influence the
result. The strongest attack a coercer can do is to prevent a voter from voting, what he could do
in the classical setting too.

The assumption that the sheet with the KauthvoterID
and the πvoterID will not be exchanged on his

way from the authority to the voter by mail is a realistic as it would not make much sense to change
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these informations only for a single voter. If it is done for a huge number this will be detected by
the number of accusations and maybe a vote would even have to be repeated.
Given the number of dishonest authorities is violated, it has no effect on the receipt-freeness. If
the assumption that no authority may cooperate with a votebuyer is violated, the protocol loses its
receipt-freeness. Even if only a single authority cooperates with a votebuyer and even if it is known
which one (if that one is not excluded from the set of authorities), receipt-freeness is no longer
guaranteed, as every authority knows the secret information that is needed for the receipt-freeness,
KauthvoterID

and πvoterID. A votebuyer who gets this information can no longer be convinced with
K ′

authvoterID
and π′voterID from the fake protocol.

3.6 Incremental Version of the Protocol

This is an improvement of the basic version of the protocol. The main advantage lies in the
efficiency. The initialization phase, the distribution phase, the voting phase, the denying phase and
the decryption phase remain exactly as they were in the basic version.

3.6.1 Modifications compared to the Basic Version

The collection phase, the agreement phase and the tallying phase are merged into one single phase.
The advantage is — except for performance reasons — that all honest authorities have a common
view at any point of this phase and the intermediate result, the encrypted sum, is always correct
according to the received ballots.
To process the ballots in this way, a kind of synchronicity is needed that is stronger than the one
in the basic version. In the basic version the only point that has to be reached synchronously is the
beginning and the end of each phase. In the incremental version each broadcast from one authority
to all the others has to follow a synchronous model.
The definitions of a correct and a valid vote remain the same as defined in the basic version.

1. Each authority stores for each voter one of four possible states, beginning with the initial
state empty.

• state empty: No correct ballot from this voter has yet been received. This is the initial
state.7

• state invalid: Up to now, the authority has received one or several correct but invalid
ballots, but none that was correct and valid.

• state valid: The authority has received exactly one correct and valid ballot (maybe
beside other incorrect or correct but invalid ballots)

• state double: There have been two or more different ballots that are correct and valid
as well.

2. Every time a new ballot is received, the authority processes it in the following way:

(a) The ballot is checked for correctness.

(b) The ballot is checked for validity.

(c) The authority acts according to the state the voter is in.

If a ballot is incorrect, it is ignored and will therefore have no influence on the actual state.
If the ballot is correct it is processed in the following way:

7If an incorrect ballot is received one does not know at all if it has been created by the voter who’s ID is included

in the ballot.
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correct, but invalid ballot received correct and valid ballot received

state empty: ballot is stored, new state: invalid ballot is stored, ẽ is permuted and
added homomorphically to the in-
termediate result, new state: valid.

state invalid: ballot is ignored, remains in state in-
valid

ballot is stored, instead of the pre-
vious one, ẽ is permuted and added
homomorphically to the intermedi-
ate result, new state: valid.

state valid: ballot is ignored, remains in state
valid

if the ballot is identical to the one
already stored, it is ignored and re-
mains in state valid.
If the ballot is different from the
stored one, it is stored additional to
the other, the previously stored one
is permuted and subtracted homo-
morphically from the intermediate
result, new state: double.

state double: state double is a trap state. No matter what is received,
everything is ignored and it remains in state double

state empty

state invalid

state valid

invalid
ballot

correct

correct
valid
ballot

correct
valid
ballot correct

valid
ballot state double

incorrect or invalid
ballot

incorrect
or invalid
ballot

incorrect
ballot

don’t care

Figure 3: State diagram for incremental collection

3. Each time a change of state is processed, the authority broadcasts the received ballot over
the secret channels to all other authorities.
An authority who receives a ballot broadcasted from another authority processes it exactly
in the same way as described in Step 2.

After this step all honest authorities have the same view on all submitted ballots.

4. For every voter in state invalid the corresponding authority is accused.

3.6.2 Analysis of the Incremental Version

The property of correctness will stay in the incremental version exactly as it is in the basic version.
Each vote that is counted in the tally would have been counted in the basic version too. The ballots
that are counted in the basic version are the ones that are correct and valid and where no second
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ballot from the same voter that is different from the first one exists that is correct and valid too.
In the incremental version this means that at some point in time the transition from either state
empty or state invalid to state valid is taken. The only reason for making this transition is that a
correct and valid ballot has arrived. The only transition that leads away from state valid leads to
the state double. As there is no second ballot with the same properties but different from the first
one, the transition will not be taken and therefore the vote is counted in the incremental version
too.
Every vote counted in the basic version will influence the result in the incremental version in the
same way. If no ballot from a certain voter is counted it means that either no valid ballot has been
received or two or more different correct and valid ballots have been casted by the same voter.
In the first case, that voter will not reach the state valid and therefore no vote from him will be
counted. In the second case all those ballots will arrive at all honest authorities too and the voter
will remain in state double for the rest of the vote.

Neither privacy nor receipt-freeness are influenced by the changes from the basic to the incremental
version as no entity gets more information than it would have gotten in the basic version.

4 Summary

The protocol that we propose seems to achieve less than other protocols due to the weakening of
the correctness property only to detect misbehavior instead of preventing it. It does not provide
universal verifiability. Yet another disadvantage is the strong restriction that no authority may
cooperate with a votebuyer or coercer.

Taking a closer look at other protocols claiming to achieve these goals we determine that — at the
point where one implements and uses these protocols — they lose many of their properties as they
have to compromise with the real world.

In order to get universal verifiability one needs an additional device where all votes are collected,
such as a bulletin board. As there is no such thing it has to be simulated by someone. An obvious
solution would be to do this by the set of authorities. But at this point we have lost our property of
universal verifiability and we are in the context of a threshold scheme as it is used in our protocol
because in case that the number of dishonest authorities reaches a certain level, the bulletin board
could be manipulated.
In order to achieve receipt-freeness without the restriction of the cooperation of authorities and
votebuyers, strong physical assumptions are needed. But these things do not (or not yet?) exist
in the digital world or are not available at large scale. To realize an untappable channel for each
entitled voter means to force him to have physical contact e.g. by making a visit at the local gov-
ernment. A voting booth does exist, but only in the physical world and there is no implementation
for it for an electronic context. This is a step back that would not be approved by the voters. To
convince a voter to cast his ballot using the electronic way there have to at least no disadvantages
compared to the status quo.

The only restriction why electronic voting as we propose it cannot take place in near future is the
assumption of a public-key infrastructure. All other preconditions are fulfilled. This is the strength
of our protocol.

It seems to be the weakest point in the protocol that a dishonest authority can prevent a voter
from casting a vote. It would not make much sense for an authority to do this to a single voter.
This would cause a single accusation and would therefore be interpreted as some misbehavior of a
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voter or a case of coercion rather than a misbehavior of an authority, but there would be only a
very small change in the result. If an authority prevents a whole group from casting their votes, it
is likely that this would be noticed by looking at the list of accusations and could have some effect
for this authority.

The problem how to handle the cases where non-negligible numbers of accusations either against
one authority or against several or even all authorities is difficult. A political solution would be
needed which is accepted by the community. One way would be to compare the total number of
accusations with the differences between the results for the different candidates. If the total number
of accusation is small enough not to change anything in the result, it could be considered correct.
But what about votes where only a very small majority decides which way to go and the number
of accusations reaches a level that could have influenced the result? Should the vote be repeated?

Which are the advantages of the protocol compared to votes as they take place today e.g. in
Switzerland? The advantage that it would be more comfortable to cast a vote over the internet is
often mentioned, but it seems to be rather small as it would surely not be much easier than casting
the ballot by mail which is possible in classical votes today. A further advantage might be that
voting over the internet could take place at the very time the vote takes place and does not have
to be done several days before. In questions of trust both possibilities seem to be similar. If a
voter does not trust any authority he will not be sure that his vote will be counted in either of the
two ways. The only solution for this would be universal verifiability which cannot be realized. An
advantage worth mentioning is that particularly in the incremental version the tallying is finished
more or less at the same moment when the vote is closed.

The property of receipt-freeness should not be underestimated even in comparison with the conven-
tional vote. With the possibility to vote by mail votebuying is much more likely than it was before.
A votebuyer could pay everybody who sends him all the documents for the vote together with his
document of identification for this vote that the voter has to sign beforehand. The votebuyer would
check the ballot and send it to the government himself and pay the voter if everything was fine.
Regarding this attack our protocol would be quite an improvement although all kind of votebuying
in the physical world does not seem to work in large scale.

Compared to the most simple model with a central server that collects and decrypts all votes and
presents a tally at the end of the vote, our protocol does not need such assumptions of trust from
the voter’s side. If that central server “acts” dishonestly in any way the result is arbitrary but
nobody can detect any irregularity.

From a voter’s point of view the procedure is very similar to a conventional non-electronic voting
as it currently takes place e.g. in Switzerland. It is based only on technical assumptions that are
fulfilled today except for the public-key infrastructure that is needed to guarantee the authenticity
of the different messages.

As a conclusion our protocol, is a real alternative to the system of voting as it is used nowadays.
It could be realized without huge effort and simply by using the electronic infrastructure that is at
hand in contrast to other protocols achieving receipt-freeness.
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1 Introduction

In a voting scheme, every entitled voter can submit one vote, and the sum of the submitted vote is
computed and published. A secure voting scheme should satisfy (at least) the following properties:

� SECRECY. It is infeasible to find out which voter has submitted which vote.
� CORRECTNESS. The published tally is the correct sum of the submitted valid votes.
� VERIFIABILITY. The correctness of the published tally can be verified.

The correctness property includes eligibility of the voter and validity of the vote. Verifiability can be
either local, i.e., every voter can verify that his ballot is counted, or universal, i.e., anyone can verify that
all submitted ballots are counted. Secrecy may include anonymity, meaning that one cannot determine
whether or not a certain voter has participated the vote, and may also include receipt-freeness, meaning
that a voter cannot construct a proof of the submitted vote. The latter is important for preventing vote-
selling, as it disables the voter from convincing a vote-buyer that the submitted vote is as required.
In a voting protocol, the above properties are satisfied under assumption: Typically, voting protocols
involve several authorities, and correctness and secrecy are satisfied under the assumption that a certain
number of these authorities are honest. Verifiability is usually guaranteed under the assumption of the
availability of a bulletin-board, a broadcast channel with memory. Receipt-freeness is often not achieved.
If it is satisfied, then usually under some (rather unrealistic) assumptions on the underlying communica-
tion model, e.g., existence of a voting booth or of untappable channels. Known protocols in the literature
do not satisfy anonymity.
Electronic voting was first proposed by Chaum [Cha81]. Subsequently, many voting protocols were
published. The concept of receipt-freeness was introduced by Benaloh and Tuinstra [BT94]. Receipt-
free protocols were published in [SK95, Oka97, HS00, Hir01, BFP

�

01].

2 Description

Voting protocols in the literature provide receipt-freeness (if at all) only under some unrealistic assump-
tions. Actually, full-strenght receipt-freeness seems unachievable in the standard model. However, many
receipt-free protocols even fail completely (also with respect to secrecy and/or correctness) when the
additional asusmptions are not met; hence provide a lower security level in a real-world environment
than classical voting protocols.
The goal of this work is to construct a voting scheme which is “as receipt-free as possible” under realis-
tic assumptions. Furthermore, the new scheme should not have any disadvanatage compared to classical
voting schemes. Ideally, one can constructed a protocol with “staggered receipt-freeness”. Under stan-
dard assumptions, the standard level of security (but no receipt-freeness) is achieved. Some limited level
of receipt-freeness is achieved under some reasonable assumption, and the full level of receipt-freeness
is achieved under some (perhaps unrealistic) strong assumption.
As starting points, the generic framework for constructing homomorphic (receipt-free) voting proto-
cols [Hir01] should be considered. Furthermore, the work on deniable encryption [CDNO97] and unco-
ercible multi-party computation [CG96] might be helpful for reducing the assumptions.



3 Tasks

The following is an (incomplete) list of tasks:

� Study of the literature, in particular [BT94, SK95, CDNO97, CG96, HS00, Hir01, BFP
�

01],

� construct voting protocols under standard assumptions with highest possible security level,

� analyze and prove the security of the proposed protocols.

The results have to be presented in a talk by the end of the project. Some instructions about the docu-
mentation can be found in the enclosed leaflet.
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